EE492 Senior Design II - Weekly Report 10

Group Number: May1634	Date: 3/10/16 - 3/17/16	
Project Name: Studying cell behaviors in 3D microtissues using a LabChip		
Advisor: Long Que		
Client: Long Que		

The team

Role	Group Member	
Group leader	Jonathan Yatckoske	
Team Webmaster	Yaxiong Zhang	
	Chun-Hao Lo	
Team Communication Leader	Yuqian Hu	
Team Key Concept Holder	Kaiyu Xu	

Attendance (meeting date: Mar. 17th 2015)

Jonathan Yatckoske	In person
Chun-Hao Lo	In person
Yaxiong Zhang	In person
Kaiyu Xu	Absent
Yuqian Hu	In person

Accomplishments of past week

- 1. Meet with advisor and demo the code to him.
- 2. Improve the code with better GUI. Add two methods (findDroplets and findCells) for cell tracking for better output.

Plan for coming week

- 1. Group meeting. Work on the PowerPoint for presentation.
- 2. Prepare for the second meeting with instructor.

Pending issues

One additional group meeting next week to work on the presentation.

Individual contributions

Jonathan Yatckoske	come up with two methods for better	
	output; perfect celltracking code	
Chun-Hao Lo	website maintenance; improve	
	sorting; code testing	
Yaxiong Zhang	website maintenance; improve GUI	
Kaiyu Xu	Take down meeting notes	
Yuqian Hu	work on weekly report	

Individual hourly contributions

Name	Week Hours	Cumulative Hours
Jonathan Yatckoske	6	69.5
Chun-Hao Lo	4	57.5
Yaxiong Zhang	3	57
Kaiyu Xu	1	32
Yuqian Hu	2	50.5

Appendix(Code)

1. findDroplets.m:

```
function [ centers, radii ] = findDroplets( image, min radius, max radius )
%findDroplets finds chambers with complete droplets on the LabChip device
% Uses the imfindcircles function to find the droplets within a radius
% range. Because imfindcircles sorts output by a matrix that it would
    range. Because imfindcircles sorts output by a metric that is useless
% for our purposes, this function then resorts the circles found by
   position in the image.
[centers_local, radii] = imfindcircles(image, [min_radius max_radius], 'Method', 'TwoStage');
[y_co,y_index] = sort(centers_local(:,2));
temp_i = sort(y_index);
temp = centers local;
temp(temp_i) = centers_local(y_index); %sorts x-coordinate by ascending order of y-coordinates
temp(temp i,2) = centers local(y index,2);
centers = temp;
end
2. findCells.m
```

```
function [ stats ] = findCells(X, centers, radii, radius, k, i)
%findCells using edge detection and image processing to locate the cells within the frame of the droplets
    final version of the function must iterate through the droplets
% identified by centers array
         rect = [centers(i,1)-radius centers(i,2)-radius 2*radius 2*radius];
         X2{1} = imresize(imcrop(X, rect),2.9,'bilinear');
         [-, threshold] = edge(X2{1}, 'canny');
         fudgeFactor = 0.9;
        BWs = edge(X2{1},'canny',threshold*fudgeFactor);
        se90 = strel('line',3,90);
se0 = strel('line',3,0);
        BWsdil = imdilate(BWs, [se90,se0]);
        BWdfill = imfill(BWsdil, 'holes');
        BWnobord = imclearborder(BWdfill, 4);
         seD = strel('diamond',1);
        BWsmooth = imerode(BWnobord,seD);
BWsmooth = imerode(BWsmooth,seD);
         BW_final = bwareaopen(BWsmooth, 300);
         \label{eq:figure} figure (8), \; subplot (2,2,1), \; subimage (X), \; viscircles (centers, radii); \\ subplot (2,2,2), \; subimage (X2\{1\}); \\
        subplot(2,2,3), subimage(BW_final);
         stats = regionprops(BW final, 'Centroid');
end
```