EE492 Senior Design II - Weekly Report 11

Group Number: May1634	Date: 3/17/16 - 3/24/16	
Project Name: Studying cell behaviors in 3D microtissues using a LabChip		
Advisor: Long Que		
Client: Long Que		

The team

Role	Group Member	
Group leader	Jonathan Yatckoske	
Team Webmaster	Yaxiong Zhang	
	Chun-Hao Lo	
Team Communication Leader	Yuqian Hu	
Team Key Concept Holder	Kaiyu Xu	

Attendance (meeting date: Mar. 24th 2015)

Jonathan Yatckoske	In person
Chun-Hao Lo	In person
Yaxiong Zhang	In person
Kaiyu Xu	In person
Yuqian Hu	In person

Accomplishments of past week

- 1. Work on the PowerPoint for presentation.
- 2. Improve cell tracking code and GUI

Plan for coming week

Prepare for the second meeting with instructor.

Pending issues

One additional group meeting next week to work on the presentation.

Individual contributions

Jonathan Yatckoske	perfect celltracking code; work on	
	presentation slides	
Chun-Hao Lo	website maintenance; code testing;	
	work on presentation slides	
Yaxiong Zhang	website maintenance; improve GUI;	
	work on presentation slides	
Kaiyu Xu	Take down meeting notes; work on	
	presentation slides	
Yuqian Hu	work on weekly report; work on	
	presentation slides	

Individual hourly contributions

Name	Week Hours	Cumulative Hours
Jonathan Yatckoske	6	75.5
Chun-Hao Lo	5	62.5
Yaxiong Zhang	5	62
Kaiyu Xu	2	34
Yuqian Hu	3	53.5

Appendix(Code)

1. findDroplets.m:

```
function [ centers, radii ] = findDroplets( image, min_radius, max_radius )
%findDroplets finds chambers with complete droplets on the LabChip device
% Uses the imfindcircles function to find the droplets within a radius
% range. Because imfindcircles sorts output by a metric that is useless
% for our purposes, this function then resorts the circles found by
% position in the image.
[centers_local, radii] = imfindcircles(image, [min_radius max_radius], 'Method', 'TwoStage');
[y_co,y_index] = sort(centers_local(:,2));
temp_i = sort(y_index);
temp = centers_local;
temp(temp_i) = centers_local(y_index); %sorts x-coordinate by ascending order of y-coordinates
temp(temp_i,2) = centers_local(y_index,2);
centers = temp;
end
```

2. findCells.m

```
function [ stats ] = findCells(X, centers, radii, radius, k, i)
%findCells using edge detection and image processing to locate the cells within the frame of the droplets
% final version of the function must iterate through the droplets
% identified by centers array
         rect = [centers(i,1)-radius centers(i,2)-radius 2*radius 2*radius];
        X2{1} = imresize(imcrop(X, rect), 2.9, 'bilinear');
         [-, threshold] = edge(X2{1}, 'canny');
         fudgeFactor = 0.9;
        BWs = edge(X2{1}, 'canny', threshold*fudgeFactor);
        se90 = strel('line',3,90);
se0 = strel('line',3,0);
        BWsdil = imdilate(BWs, [se90,se0]);
        BWdfill = imfill(BWsdil, 'holes');
        BWnobord = imclearborder(BWdfill, 4);
         seD = strel('diamond',1);
        BWsmooth = imerode(BWnobord, seD);
        BWsmooth = imerode(BWsmooth,seD)
        BW_final = bwareaopen(BWsmooth, 300);
        figure(8), subplot(2,2,1), subimage(X), viscircles(centers, radii);
subplot(2,2,2), subimage(X2{1});
        subplot(2,2,3), subimage(BW_final);
        stats = regionprops(BW_final, 'Centroid');
end
```

3. Code for cell-tracking: close all clear all

filename = uigetfile('*.tif'); info = imfinfo(filename); num_images = numel(info); bit_depth = info.BitDepth;

test = 0; data= $\{\};$

radius = 57;

for k = 1:num_images

X = imread(filename, k);

%if the image is RGB instead of grayscale, convert it before doing %anything else if bit_depth == 24 X = rgb2gray(X); end

%find the droplets

[centers, radii] = findDroplets(X,40,120);

%ignore any droplets with nothing in them

%do this by deleting the rows from centers and radii that have no cells

%found in the first frame

%TODO: write a function for this part

% find the cells in remaining droplets

if not(isempty(centers))

```
for i = 1:length(centers)
    stats = findCells( X, centers, radii, radius, k, i);
    data{k,i} = stats;
    end
else
```

data $\{k\} = [];$

end

end

4.improved GUI code

```
1 function varargout = CellTrackerGUI(varargin)
   % CELLTRACKERGUI MATLAB code for CellTrackerGUI.fig
           CELLTRACKERGUI, by itself, creates a new CELLTRACKERGUI or raises the existing
   85
 4 %
           singleton*
 5 %
           H = CELLTRACKERGUI returns the handle to a new CELLTRACKERGUI or the handle to
 6
 7 %
           the existing singleton*.
 8 %
           CELLTRACKERGUI('CALLBACK', hObject, eventData, handles, ...) calls the local
   85
10 %
           function named CALLBACK in CELLTRACKERGUI.M with the given input arguments.
11 %
           CELLTRACKERGUI('Property', 'Value',...) creates a new CELLTRACKERGUI or raises the existing singleton*. Starting from the left, property value pairs are applied to the GUI before CellTrackerGUI_OpeningFcn gets called. An
   8
13 %
14 %
           unrecognized property name or invalid value makes property application
15 %
16 %
           stop. All inputs are passed to CellTrackerGUI_OpeningFcn via varargin.
17 %
18 %
           *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
19 %
           instance to run (singleton)".
20 %
21 % See also: GUIDE, GUIDATA, GUIHANDLES
23 % Edit the above text to modify the response to help CellTrackerGUI
25 % Last Modified by GUIDE v2.5 27-Mar-2016 23:25:07
26
27 % Begin initialization code - D0 NOT EDIT
28 gui Singleton = 1;
29 gui_State = struct('gui_Name'
                                               mfilename,
                          gui_reame:, mTltename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @CellTrackerGUI_OpeningFcn, ...
'gui_OutputFcn', @CellTrackerGUI_OutputFcn, ...
'gui_layoutFcn', [], ...
                           'gui Callback',
                                               [1):
35 if nargin && ischar(varargin{1})
36 gui_State.gui_Callback = str2func(varargin{1});
37 end
39 if nargout
        [varargout{l:nargout}] = gui_mainfcn(gui_State, varargin{:});
41 else
        gui_mainfcn(gui_State, varargin{:});
43 end
44 % End initialization code - DO NOT EDIT
47 % ---- Executes just before CellTrackerGUI is made visible.
48 function CellTrackerGUI_OpeningFcn(hObject, eventdata, handles, varargin)
49 % This function has no output args, see OutputFcn.
50 % hObject handle to figure
51 % eventdata reserved - to be defined in a future version of MATLAB
```

```
52 % handles structure with handles and user data (see GUIDATA)
53 % varargin command line arguments to CellTrackerGUI (see VARARGIN)
54
55 % Choose default command line output for CellTrackerGUI
56 handles.output = hObject;
58 % Update handles structure
59 guidata(hObject, handles);
61~\% UIWAIT makes CellTrackerGUI wait for user response (see UIRESUME)
62 % uiwait(handles.figurel);
63
65 % --- Outputs from this function are returned to the command line.
66 function varargout = CellTrackerGUI_OutputFcn(hObject, eventdata, handles)
67 % varargout cell array for returning output args (see VARARGOUT)
68 % hObject handle to figure
68 % hObject
69 % eventdata reserved - to be defined in a future version of MATLAB
70 % handles
                  structure with handles and user data (see GUIDATA)
72 % Get default command line output from handles structure
73 varargout{1} = handles.output;
74
76 % --- Executes on button press in loadButton.
77 function loadButton Callback(hObject, eventdata, handles)
78 % hObject handle to loadButton (see GCBO)
79 % eventdata reserved - to be defined in a future version of MATLAB
                   structure with handles and user data (see GUIDATA)
80 % handles
81 global info;
82 global filename;
83 global num images:
84 global test;
85 global data
86 global radius:
88 filename = uigetfile('*.tif');
89 info = imfinfo(filename)
90 num images = numel(info)
91 set(handles.StaticText,'string',filename);
93 test = 0;
94 data={};
96 radius = 57:
100 function StartPage_Callback(hObject, eventdata, handles)
101 % hObject handle to StartPage (see GCBO)
102 % eventdata reserved - to be defined in a future version of MATLAB
103 % handles
                   structure with handles and user data (see GUIDATA)
105 % Hints: get(hObject,'String') returns contents of StartPage as text
106 %
                str2double(get(hObject,'String')) returns contents of StartPage as a double
109 % --- Executes during object creation, after setting all properties.
110 function StartPage CreateFcn(h0bject, eventdata, handles)
111 % h0bject handle to StartPage (see GCBO)
112 % eventdata reserved to be defined in a future version of MATLAB
                   empty - handles not created until after all CreateFcns called
113 % handles
115 % Hint: edit controls usually have a white background on Windows.
116 % See ISPC and COMPUTER.
117 if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject, 'BackgroundColor', 'white');
119 end
123 function EndPage Callback(hObject, eventdata, handles)
124 % hobject handle to EndPage (see GCBO)
125 % eventdata reserved - to be defined in a future version of MATLAB
                   structure with handles and user data (see GUIDATA)
126 % handles
128 % Hints: get(hObject,'String') returns contents of EndPage as text
129 % str2double(get(hObject,'String')) returns contents of EndPage as a double
130
132 % --- Executes during object creation, after setting all properties.
133 function EndPage_CreateFcn(h0bject, eventdata, -)
134 % h0bject handle to EndPage (see GCBO)
135 % eventdata reserved - to be defined in a future version of MATLAB
                   empty - handles not created until after all CreateFcns called
136 % handles
138 % Hint: edit controls usually have a white background on Windows.
139 % See ISPC and COMPUTER.
148 if ispc && isequal(get(hObject, 'BackgroundColor'), get(0, 'defaultUicontrolBackgroundColor'))
141
         set(hObject,'BackgroundColor','white');
142 end
```

```
145 % --- Executes on selection change in listbox2.
 146 function listbox2_Callback(hObject, eventdata, handles)
 147 % hObject handle to listbox2 (see GCBO)
148 % eventdata reserved - to be defined in a future version of MATLAB
 149 % handles
                   structure with handles and user data (see GUIDATA)
 151 % Hints: contents = cellstr(get(hObject, 'String')) returns listbox2 contents as cell array
 152 %
                contents{get(hObject, 'Value')} returns selected item from listbox2
 154
 155 % --- Executes during object creation, after setting all properties.
 156 function listbox2 CreateFcn(hObject, eventdata, handles)
157 % hObject handle to listbox2 (see GCBO)
158 % eventdata reserved - to be defined in a future version of MATLAB
 159 % handles
                    empty - handles not created until after all CreateFcns called
 161 % Hint: listbox controls usually have a white background on Windows.
 162 % See ISPC and COMPUTER.
163 if ispc && isequal(get(hObject, 'BackgroundColor'), get(0, 'defaultUicontrolBackgroundColor'))
          set(hObject, 'BackgroundColor', 'white');
 165 end
 167
 168 % --- Executes on key press with focus on listbox2 and none of its controls.
 169 function listbox2 KeyPressFcn(hObject, eventdata, handles)
170 % hObject handle to listbox2 (see GCBO)
171 % eventdata structure with the following fields (see MATLAB.UI.CONTROL.UICONTROL)
               Key: name of the key that was pressed, in lower case
Character: character interpretation of the key(s) that was pressed
Modifier: name(s) of the modifier key(s) (i.e., control, shift) pressed
 172 %
 173 %
 174 %
 175 % handles structure with handles and user data (see GUIDATA)
 178 %
         -- Executes on button press in DoitButton.
 179 function DoitButton_Callback(hObject, eventdata, handles)
 180 % hObject handle to DoitButton (see GCBO)
181 % eventdata reserved - to be defined in a future version of MATLAB
 182 % handles structure with handles and user data (see GUIDATA)
189 % handles structure with handles and user data (see GUIDATA)
 190 global type:
 191 contents=get(handles.popupmenul,'value');
 192 switch contents
         case 1
               type=0;
         case 2
 196
              type=1;
```

```
197 end
198
199
200
201 % Hints: contents = cellstr(get(hObject,'String')) returns popupmenul contents as cell array
202 % contents{get(hObject,'Value')} returns selected item from popupmenul
 203
204
205 % --- Executes during object creation, after setting all properties.
206 function popupmenul_CreateFcn(hObject, eventdata, handles)
207 % hObject handle to popupmenul (see GCBO)
208 % eventdata reserved - to be defined in a future version of MATLAB
 209 % handles empty - handles not created until after all CreateFcns called
211 % Hint: popupmenu controls usually have a white background on Windows.
212 % See ISPC and COMPUTER.
213 if ispc && isequal(get(hObject, 'BackgroundColor'), get(0, 'defaultUicontrolBackgroundColor'))
214 set(hObject, 'BackgroundColor', 'white');
215 end
0
```

```
218 % --- Executes on button press in pushbutton3.
219 function pushbutton3_Callback(hObject, eventdata, handles)
220 % hObject handle to pushbutton3 (see GCBO)
221 % eventdata reserved - to be defined in a future version of MATLAB
222 % handles
                          structure with handles and user data (see GUIDATA)
223 global info;
224 global type;
225 global filename;
226 global num_images;
227 global test;
228 global data;
229 global radius;
230 global pausetime;
231 bit_depth = info.BitDepth;
232 for k = 1:num_images
233 X = imread(filename, k);
234
           if bit_depth == 24
                 X = rgb2gray(X);
236
            end
            [centers, radii] = findDroplets(X,40,120);
%figure(1), imshow(X), viscircles(centers, radii);
if not(isempty(centers))
239
                   [X2{k}, BW final, stats] = findCells( X, centers, radii, radius, k, l);
data{k,l} = stats;
240
241
242
            else
                  data{k} = [];
X2{k} = X2{k·1};
243
244
245
           end
```

```
246
            if k == 1
                   x_traj = [data{1}(1).Centroid(1)];
y_traj = [data{1}(1).Centroid(2)];
247
248
249
             end
            if not(isempty(data{k}))
    x_traj = [x_traj data{k}(1).Centroid(1)];
250
251
             end
            if not(isempty(data{k}))
    y_traj = [y_traj data{k}(1).Centroid(2)];
 254
            end
257
258
259
260
261
            if type ==0
                    plot(handles.axes1,x_traj,300-y_traj,'ro');
            end
            if type==1
262
263
264
265
266
                    plot(handles.axes1,x_traj,300-y_traj,'ro-');
            end
             axis(handles.axes1, [0 300 0 300]);
             title(handles.axes1, 'Position');
xlabel(handles.axes1, 'Pixels')
 267
268
269
             ylabel(handles.axes1, 'Pixels')
             ylabel(handles.axes1, Pixels')
imshow(X,'Parent',handles.axes2), viscircles(handles.axes2, centers, radii);
label = sprintf('%.2f% (%d/%d)', k/num_images*100, k, num_images);
set(handles.percentage, 'String', label);
imshow(BW_final,'Parent',handles.axes3);
imshow(X2{k},'Parent',handles.axes4);
paurea(maurestime);
270
274
             pause(pausetime);
276 end
277
278
279 function PauseTime_Callback(hObject, eventdata, handles)
280 % hobject handle to PauseTime (see GCBO)
281 % eventdata reserved - to be defined in a future version of MATLAB
282 % handles structure with handles and user data (see GUIDATA)
283 global pausetime;
284 n=get(hObject,'string');
285 pausetime=str2double(n);
286
288 % Hints: get(hObject, 'String') returns contents of PauseTime as text
289 %
                     str2double(get(hObject,'String')) returns contents of PauseTime as a double
290
291
```

291 292 % --- Executes during object creation, after setting all properties. 293 function PauseTime_CreateFcn(h0bject, eventdata, handles) 294 % h0bject handle to PauseTime (see GCBO) 295 % eventdata reserved - to be defined in a future version of MATLAB

```
296 % handles empty - handles not created until after all CreateFcns called
298 % Hint: edit controls usually have a white background on Windows.
399 % See ISPC and COMPUTER.
300 if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
301
          set(hObject, 'BackgroundColor', 'white');
302 end
383
304
305 function [ X2, BW_final, stats ] = findCells(X, centers, radii, radius, k, i)
306 %findCells using edge detection and image processing to locate the cells within the frame of the droplets
307 % final version of the function must iterate through the droplets
308 % identified by centers array
389
               rect = [centers(i,1)-radius centers(i,2)-radius 2*radius 2*radius];
X2 = imresize(imcrop(X, rect),2.9,'bilinear');
310
                [-, threshold] = edge(X2, 'canny');
fudgeFactor = 0.9;
314
               BWs = edge(X2, 'canny', threshold*fudgeFactor);
               se90 = strel('line',3,90);
se0 = strel('line',3,0);
320
               BWsdil = imdilate(BWs, [se90,se0]);
               BWdfill = imfill(BWsdil, 'holes');
               BWnobord = imclearborder(BWdfill, 4):
               seD = strel('diamond',1);
               BWsmooth = imerode(BWnobord,seD);
BWsmooth = imerode(BWsmooth,seD);
328
330
               BW_final = bwareaopen(BWsmooth, 300);
               stats = regionprops(BW final, 'Centroid');
336 function [ centers, radii ] = findDroplets( image, min_radius, max_radius )
337 %findDroplets finds chambers with complete droplets on the LabChip device
338 % Uses the imfindcircles function to find the droplets within a radius
339 %
          range. Because imfindcircles sorts output by a metric that is useless
340 % for our purposes, this function then resorts the circles found by
341 % position in the image.
342 [centers_local, radii] = imfindcircles(image, [min_radius max_radius], 'Method', 'TwoStage');
345 if not(isempty(centers_local))
          %sort by y
[y_co,y_index] = sort(centers_local(:,2));
347
348
349
         temp i = sort(y index);
350
         temp = centers local;
          353
354
          %determine lengths of rows by finding first and last index of y within
          %ranges
358
          %then sort by x
 361
           centers = temp;
367 else
```

363 centers = []; 364 end