EE492 Senior Design II - Weekly Report 14

Group Number: May1634	Date: 4/7/16 - 4/14/16	
Project Name: Studying cell behaviors in 3D microtissues using a LabChip		
Advisor: Long Que		
Client: Long Que		

The team

Role	Group Member	
Group leader	Jonathan Yatckoske	
Team Webmaster	Yaxiong Zhang	
	Chun-Hao Lo	
Team Communication Leader	Yuqian Hu	
Team Key Concept Holder	Kaiyu Xu	

Attendance (meeting date: Apr. 7th 2015)

Jonathan Yatckoske	In person
Chun-Hao Lo	In person
Yaxiong Zhang	In person
Kaiyu Xu	Absent
Yuqian Hu	In person

Accomplishments of past week

- 1. Improved celltrackGUI code
- 2. Finished poster for final presentation

Plan for coming week

- 1. Meeting with adviser. Go through the presentation before the official final presentation
- 2. Finalize the powerpoint for final presentation.

Pending issues

Finalize the poster:

1. Remark the flowchart to match the color scheme of the poster

2. Change the color and fonts used in the GUI to match the aesthetic of the poster

Individual contributions

Jonathan Yatckoske	Work on the poster; improve the code	
Chun-Hao Lo	website maintenance; improve the layout of the poster	
Yaxiong Zhang	website maintenance; change the timeline and flow chart in he poster	
Kaiyu Xu	Take down meeting notes	
Yuqian Hu	work on weekly report; work on the poster	

Individual hourly contributions

Name	Week Hours	Cumulative Hours
Jonathan Yatckoske	10	95.5
Chun-Hao Lo	6	76.5
Yaxiong Zhang	6	76
Kaiyu Xu	1	38
Yuqian Hu	4	64.5

Appendix:

(CellTrackerGUI.m Updated)

```
39 if nargout
        [varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});
 40
 41 else
        gui mainfcn(gui State, varargin{:});
 43 end
 44 % End initialization code - DO NOT EDIT
 45
 46
 47 % --- Executes just before CellTrackerGUI is made visible.
 48 function CellTrackerGUI OpeningFcn(hObject, eventdata, handles, varargin)
 49 % This function has no output args, see OutputFcn.
 50 % hObject
                  handle to figure
 51 % eventdata reserved - to be defined in a future version of MATLAB
 52 % handles
                  structure with handles and user data (see GUIDATA)
 53 % varargin command line arguments to CellTrackerGUI (see VARARGIN)
 55 % Choose default command line output for CellTrackerGUI
 56 handles.output = hObject;
 58 % Update handles structure
 59 guidata(hObject, handles);
 61 % UIWAIT makes CellTrackerGUI wait for user response (see UIRESUME)
 62 % uiwait(handles.figurel);
 63
 64
 65 % --- Outputs from this function are returned to the command line.
 66 function varargout = CellTrackerGUI OutputFcn(hObject, eventdata, handles)
 67 % varargout cell array for returning output args (see VARARGOUT);
 68 % hObject
                  handle to figure
 69 % eventdata reserved - to be defined in a future version of MATLAB
 70 % handles
                  structure with handles and user data (see GUIDATA)
 72 % Get default command line output from handles structure
 73 varargout{1} = handles.output;
 76 % --- Executes on button press in loadButton.
 77 function loadButton Callback(hObject, eventdata, handles)
 78 % hObject
               handle to loadButton (see GCBO)
 79 % eventdata reserved - to be defined in a future version of MATLAB
80 % handles
                structure with handles and user data (see GUIDATA)
81 global info;
82 global filename;
 83 global num images:
84 global test;
85 global data;
86 global radius;
88 filename = uigetfile('*.tif');
89 assignin('base','filename',filename);
 90 info = imfinfo(filename);
 91 assignin('base', 'info', info);
 92 num_images = numel(info);
93 assignin('base','num images',num images);
 94 set(handles.StaticText,'string',filename);
96 test = 0;
97 data={};
98
99 radius = 57;
103 function StartPage Callback(hObject, eventdata, handles)
104 % hObject handle to StartPage (see GCBO)
105 % eventdata reserved - to be defined in a future version of MATLAB
106 % handles structure with handles and user data (see GUIDATA)
108 % Hints: get(hObject, 'String') returns contents of StartPage as text
            str2double(get(hObject,'String')) returns contents of StartPage as a double
```

```
113 % --- Executes during object creation, after setting all properties.
114 function StartPage CreateFcn(hObject, eventdata, handles)
115 % hObject handle to StartPage (see GCBO)
116 % eventdata reserved - to be defined in a future version of MATLAB
117 % handles empty - handles not created until after all CreateFcns called
118
119 % Hint: edit controls usually have a white background on Windows.
120 %
               See ISPC and COMPUTER.
121 if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
          set(hObject, 'BackgroundColor', 'white');
123 end
127 function EndPage Callback(hObject, eventdata, handles)
128 % hObject handle to EndPage (see GCBO)
129 % eventdata reserved - to be defined in a future version of MATLAB
130 % handles
                    structure with handles and user data (see GUIDATA)
132 % Hints: get(hObject,'String') returns contents of EndPage as text
133 % str2double(get(hObject,'String')) returns contents of EndPage as a double
134
136 % --- Executes during object creation, after setting all properties.
137 function EndPage CreateFcn(hObject, eventdata, -)
138 % hObject handle to EndPage (see GCBO)
139 % eventdata reserved - to be defined in a future version of MATLAB
140 % handles empty - handles not created until after all CreateFcns called
141
142 % Hint: edit controls usually have a white background on Windows.
                See ISPC and COMPUTER.
144 if ispc && isequal(get(hObject, 'BackgroundColor'), get(0, 'defaultUicontrolBackgroundColor'))
145
        set(hObject, 'BackgroundColor', 'white');
146 end
149 % --- Executes on selection change in listbox2.
150 function listbox2 Callback(hObject, eventdata, handles)
151 % hObject handle to listbox2 (see GCBO)
152 % eventdata reserved - to be defined in a future version of MATLAB
153 % handles
                    structure with handles and user data (see GUIDATA)
155 % Hints: contents = cellstr(get(hObject, 'String')) returns listbox2 contents as cell array
156 %
                contents{get(hObject,'Value')} returns selected item from listbox2
159 % --- Executes during object creation, after setting all properties.
159% --- Executes during object creation, after setting all properties.
160 function listbox2 CreateFcn(hObject, eventdata, handles)
161% hObject handle to listbox2 (see GCBO)
162% eventdata reserved - to be defined in a future version of MATLAB
163% handles empty - handles not created until after all CreateFcns called
165 % Hint: listbox controls usually have a white background on Windows.
               See ISPC and COMPUTER.
166 %
167 if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
168 set(hObject, 'BackgroundColor', 'white');
169 end
172 % --- Executes on key press with focus on listbox2 and none of its controls.
173 function listbox2 KeyPressFcn(hObject, eventdata, handles)
174 % hObject handle to listbox2 (see GCBO)
175 % eventdata structure with the following fields (see MATLAB.UI.CONTROL.UICONTROL)
              Key: name of the key that was pressed, in lower case
Character: character interpretation of the key(s) that was pressed
Modifier: name(s) of the modifier key(s) (i.e., control, shift) pressed
es structure with handles and user data (see GUIDATA)
177 %
179 % handles
182 % --- Executes on button press in DoitButton.
183 function DoitButton Callback(hObject, eventdata, handles)
184 % hObject handle to DoitButton (see GCBO)
185 % eventdata reserved - to be defined in a future version of MATLAB
186 % handles
                   structure with handles and user data (see GUIDATA)
```

```
189 % --- Executes on selection change in popupmenul.
190 function popupmenul Callback(hObject, eventdata, handles)
191 % hObject handle to popupmenul (see GCBO)
192 % eventdata reserved - to be defined in a future version of MATLAB
193 % handles
                structure with handles and user data (see GUIDATA)
194 global type;
195 contents=get(handles.popupmenul,'value');
196 switch contents
197
       case 1
198
           type=0;
       case 2
           type=1;
201 end
205 % Hints: contents = cellstr(get(hObject, 'String')) returns popupmenul contents as cell array
            contents{get(hObject,'Value')} returns selected item from popupmenul
206 %
207
208
209 % --- Executes during object creation, after setting all properties.
210 function popupmenul CreateFcn(hObject, eventdata, handles)
211 % hObject
               handle to popupmenul (see GCBO)
212 % eventdata reserved - to be defined in a future version of MATLAB
213 % handles empty - handles not created until after all CreateFcns called
214
215 % Hint: popupmenu controls usually have a white background on Windows.
           See ISPC and COMPUTER.
216 %
217 if ispc && isequal(get(hObject, 'BackgroundColor'), get(0, 'defaultUicontrolBackgroundColor'))
218 set(hObject, 'BackgroundColor', 'white');
219 end
222 % --- Executes on button press in pushbutton3.
223 function pushbutton3 Callback(hObject, eventdata, handles)
224 % hObject
                handle to pushbutton3 (see GCBO)
225 % eventdata reserved - to be defined in a future version of MATLAB
226 % handles
                structure with handles and user data (see GUIDATA)
227 global info;
228 global type;
229 global filename;
230 global num_images;
231 global test;
232 global data;
233 global radius;
234 global pausetime;
235 bit_depth = info.BitDepth;
237 colorsForTrajPlot = {'r', 'g', 'b', 'y', 'm', 'c'};
238
239 X = imread(filename, 1);
240 [centers, radii] = findDroplets(X,50,100);
241 [numDroplets, trash] = size(centers);
242
243 label = sprintf('Droplets(1/%d)', numDroplets);
244 set(handles.chamberprog, 'String', label);
245
246 percentageChange = 1/(numDroplets*num images);
247 percentage = 0;
249
        x traj = cell(150,1); xtrajreal = cell(150,1);
        y traj = cell(150,1); ytrajreal = cell(150,1);
250
        lastx = cell(10,1);
        lasty = cell(10,1)
        droppedframes = cell(10,1);
254
255 for i = 1:numDroplets
256
        empty = 0;
258
        TotCells = 0;
```

```
260
            %Check if the droplet has any cells
261
            for k = 1:5
262
                 X = imread(filename, k);
                 if bit_depth==24
264
                 X = rgb2gray(X);
                  [centers, radii] = findDroplets(X,50,100);
                  [X2{k}, BW final, stats, centers loc, rads] = findCells( X, centers, radii, radius, k, i);
270
                 if isempty(centers loc)
                        empty = empty + 1;
                 end
                  imshow(X,'Parent',handles.axes2), viscircles(handles.axes2, centers, radii);
                 imsnow(A, Parent , handles.axes2), viscirctes(handles.axes2, centers, radii);
testlabel = sprintf('Testing(%d/5)', k);
set(handles.frameprog, 'String', testlabel);
label = sprintf('Droplet (%d/%d)', i, numDroplets);
set(handles.chamberprog, 'String', label);
imshow(BW final, 'Parent', handles.axes3), viscircles(handles.axes3, centers_loc, rads);
274
276
278
279
                  imshow(X2{k},'Parent',handles.axes4);
                  label = sprintf('Progress: %.2f%', percentage*100);
set(handles.percentage, 'String', label);
280
                  pause(pausetime);
283
            end
284
            %if the majority of the first 5 frames aren't empty, process all frames
288
           %for trajectory plots and data
           if (empty < 3)
289
                  for k = 1:num images
                       X = imread(filename, k);
291
                        if bit depth == 24
294
                             X = rgb2gray(X);
295
                      [centers, radii] = findDroplets(X,50,100);
                      [numCenters trash] = size(centers);
                      if (numCenters==numDroplets)
                           [X2\{k\}], BW final, stats, centers_loc, rads] = findCells( X, centers, radii, radius, k, i); data{k} = centers loc;
 303
                           data{k} = [];
 305
                               X2\{k\} = X2\{k-1\};
 307
                           else
 308
                                X2\{k\} = [];
                           end
 310
                      [numCells, trash] = size(data{k});
if (numCells>TotCells)
 314
315
                           TotCells = numCells
                     end
                     if not(isempty(data{k}))
inv j=::numcets

testlast = max(find(-cellfun('isempty',lastx)));

assignin('base','k',k); assignin('base','lastx',lastx); assignin('base','lasty',lasty); assignin('base','numCells',numCells);

if (k>1)&&(j<testlast)

if (k>1)&&(j<testlast)</pre>
                                     if ((abs(data{k}(j,1)-lastx{j}) < 5) & (abs(data{k}(j,2)-lasty{j}) < 5))
x traj{j} = [x traj{j} data{k}(j,1)];
y traj{j} = [y traj{j} data{k}(j,2)];</pre>
                                     end
                                elseif j==testlast
                                     x traj{j} = [x traj{j} data{k}(j,1)];
y traj{j} = [y traj{j} data{k}(j,2)];
                                else
                                     droppedframes{j} = droppedframes{j} + 1;
                                lastx{j} = data{k}(j,1); lasty{j} = data{k}(j,2);
```

```
end
                  if numel(x_traj)>=1
                      if type==0
   for j=1:TotCells
340
                               plot(handles.axes1,x_traj{j}.*(120/334),120.-(y_traj{j}.*(120/334)),'o-', 'Color', colorsF
orTrajPlot{j});
                          end
                      end
                      if type==1
                           %edit this to make origin-centered plots
for j=1:TotCells
346
347
                               plot(handles.axes1,-334.+x traj{j}.*(334/120),120.-(y traj{j}.*(334/120)),'o-','color',col
orsForTrajPlot{j});
                           end
                      end
                  end
                  axis(handles.axes1, [0 120 0 120]);
                  title(handles.axes1, 'Position')
xlabel(handles.axes1, '\mum')
ylabel(handles.axes1, '\mum')
358
                  hold(handles.axes1, 'on')
359
                  imshow(X,'Parent',handles.axes2), viscircles(handles.axes2, centers, radii);
                  label = sprintf('Frames(%d/%d)', k, num_images);
set(handles.frameprog, 'String', label);
                  percentage = percentage+percentageChange
                  label = sprintf('Progress: %.2f%', percentage*100);
set(handles.percentage,'String',label);
imshow(BW final,'Parent',handles.axes3), viscircles(handles.axes3, centers_loc, rads);
367
                  imshow(X2{k}, 'Parent', handles.axes4);
                  label = sprintf('Droplets(%d/%d)', i, numDroplets);
                   set(handles.chamberprog,'String',label);
                   pause(pausetime);
                   assignin('base','data',data);
assignin('base','xtraj',x traj);
assignin('base','ytraj',y_traj);
assignin('base','X2', X2);
374
376
378
              end
379
         else
              percentage = percentage + percentageChange*num_images;
         end
384 end
386
387 function PauseTime_Callback(hObject, eventdata, handles)
388 % hObject handle to PauseTime (see GCBO)
389 % eventdata reserved - to be defined in a future version of MATLAB
390 % handles
                    structure with handles and user data (see GUIDATA)
391 global pausetime;
392 n=get(hObject,'string');
393 pausetime=str2double(n);
394
396 % Hints: get(hObject,'String') returns contents of PauseTime as text
               str2double(get(h0bject,'String')) returns contents of PauseTime as a double
397 %
398
399
400 % --- Executes during object creation, after setting all properties.
401 function PauseTime CreateFcn(hObject, eventdata, handles)
402 % hObject
                   handle to PauseTime (see GCBO)
403 % eventdata reserved - to be defined in a future version of MATLAB
404 % handles
                   empty - handles not created until after all CreateFcns called
405
406 % Hint: edit controls usually have a white background on Windows.
              See ISPC and COMPUTER.
408 if ispc && isequal(get(hObject, 'BackgroundColor'), get(0, 'defaultUicontrolBackgroundColor'))
         set(hObject, 'BackgroundColor', 'white');
```

```
410 end
411
412
413 function [ X2, BW final, stats, centers loc, rads ] = findCells(X, centers, radii, radius, k, i)
414 %findCells using edge detection and image processing to locate the cells within the frame of the droplets
415 %
        final version of the function must iterate through the droplets
        identified by centers array
416 %
            rect = [centers(i,1)-radius centers(i,2)-radius 2*radius 2*radius];
417
418
            X2 = imresize(imcrop(X, rect), 2.9, 'bilinear');
419
420
            [~, threshold] = edge(X2, 'canny');
421
            fudgeFactor = 1.2;
            BWs = edge(X2,'canny',threshold*fudgeFactor);
422
423
424
            se90 = strel('line',3,90);
425
            se0 = strel('line',3,0);
426
            BWsdil = imdilate(BWs, [se90,se0]);
427
428
429
            BWdfill = imfill(BWsdil, 'holes');
1
430
431
            BWnobord = imclearborder(BWdfill, 4);
432
433
            seD = strel('diamond',1);
            BWsmooth = imerode(BWnobord, seD);
BWsmooth = imerode(BWsmooth, seD);
434
435
436
437
            BW final = bwareaopen(BWsmooth, 500);
438
439
            [centers loc, rads] = imfindcircles(BW final, [20 50], 'Method', 'TwoStage');
440
            %figure(1), imshow(BW final), viscircles(centers loc, rads);
441
442
            stats = regionprops(BW final, 'Centroid');
448 function [ centers, radii ] = findDroplets( image, min radius, max radius )
449 %findDroplets finds chambers with complete droplets on the LabChip device
450 % Uses the imfindcircles function to find the droplets within a radius
         range. Because imfindcircles sorts output by a metric that is useless
451 %
         for our purposes, this function then resorts the circles found by
453 %
         position in the image.
454 [centers local, radii] = imfindcircles(image, [min radius max radius], 'Method', 'TwoStage');
455
456
457 if not(isempty(centers_local))
458
         %sort by y
         [y co,y index] = sort(centers local(:,2));
459
460
         temp i = sort(y_index);
461
462
463
         temp = centers local;
464
         temp(temp i) = centers local(y index); %sorts x-coordinate by ascending order of y-coordinates
465
466
         temp(temp i,2) = centers local(y index,2);
467
468
         %then sort by x
469
         if (length(temp)>2)
             for j = 1:length(temp)-1
470
471
                  for i=1:length(temp)-j
472
                      if (temp(i+1,2)-temp(i,2) < 100)
473
                          if (temp(i+1,1) < temp(i,1))
                              temp(i,1); holdy = temp(i,2);
temp(i,1) = temp(i+1,1); temp(i,2) = temp(i+1,2);
474
475
476
                              temp(i+1,1) = holdx; temp(i+1,2) = holdy;
477
478
                      end
479
                 end
480
             end
481
482
483
         centers = temp;
484 else
485
         centers = [];
486 end
```