
Studying cell migration behaviors
in microtissues using a LabChip

Advisor: Dr. Long Que

Client: Dr. Long Que

 The team: May1634

Role Team Member

Leader Jonathan Yatckoske

Webmasters Yaxiong Zhang

Chun-Hao Lo

Communication Leader Yuqian Hu

Key Concept Holder Kaiyu Xu

Senior Design May1634

Table of Contents:

Project Statement: 1
Design Specification: 1
System Requirements: 2
Functional Decomposition: 3
Detailed Description: 4

Droplets & Chips: 4

Matlab Program: 5

Testing: 5
Issues & Challenges: 6
Conclusion: 8
Additional Documents: 9

Appendix I: Operation Manual 9

Appendix II: Previous Versions of the Design 12

Appendix III: Other Considerations & Final Thoughts 13

Appendix IV: Matlab Code 14

Senior Design May1634

Project Statement:

This project is to design a Matlab program to assist with cell behavior studies
on our client's LabChip device. The program must track migration of one or
multiple cells in arrayed microtissues formed by a polymer microfluidic chip
developed in the lab (LabChip). The program must have a graphical user
interface and track the cell migration using images from an optical
microscope as input data.

Design Specification:
Each chamber of the microfluidic device contains one droplet with one or a
few cells in microtissue. For this reason, we came up with four different ideas
in order to make the cells stand out.

● Dye the cells, and track the movement of the color
● Collect the data with the Fluorescence Microscope
● Change the contrast of image data so we separate cell and background

in different color
● Edge detection

Three out of the four ideas were not reasonable. This is covered in greater
detail in Appendix II.

Matlab has several built-in image processing functions that provided a good
starting point for our program. The primary detection method on the cells is
edge detection. The basic edge detection function is followed by several
functions for cleaning up the noise and isolating the cells from the rest of the
source image. The exact methods and parameters for the process were set
for the specific input data our client provided.

×ýŁ1

Senior Design May1634

The edge detection is performed on each frame of an image stack to add the
position data to vectors containing the x-direction trajectory and the y-
direction trajectory. The trajectory vectors are converted from pixel position
to µm position and plotted, with different colors representing each detected
object.

The program also detects well-defined circles to determine how many full
droplets are in the input data’s source image, and processes through all
frames for every detected droplet, producing trajectory plots for every non-
empty droplet.

The program in general works reasonably well, but some accuracy was
sacrificed in favor of the script running faster. The detection function we’ve
written isn’t reliable for every frame, so the program drops the frames that
produce unreasonable data. The number of dropped frames are tracked to
provide a quantifiable indication of error.

System Requirements:
Experiments on cell migration in microtissues are our client’s goal. Using the
optical microscope to get videos of the cell migration is expected.

A Matlab program is needed to identify and track the location of one or
multiple cells in the droplets stored in the device chambers. The program
must identify the number of cells in the chamber, collect location data and
produce plots of the migration trajectory of the cells, as well as calculate
velocity, distance traveled, and displacement of the cells.

×ýŁ2

Senior Design May1634

Functional Decomposition:
1. Image the migration of cells in microtissues using optical microscope
2. Track these cells and take pictures of them every two minutes
3. Load photos into Matlab
4. Crop to the chambers and find locations of cells using our Matlab

detection
5. Save the object location data
6. Comparing the current data point with last data point
7. Plot the migration trajectory of the cells using a Matlab program
8. Output the trajectory data and results of analysis calculations to the

Matlab workspace and external files as necessary

×ýŁ3Figure 1: Flowchart of the basic process

Senior Design May1634

Detailed Description:

Droplets & Chips:

The input of our collected data will be the cells within the droplets that
will be collected in the storage chambers. Figure 2 shows the LabChip
structure which forms and stores the droplets which are imaged for
the input data to our program.

!
Figure 2

Figure 3 shows the dimension of the chambers. The Matlab program is
designed specifically for use with input data of these chambers.

×ýŁ4

Dimensions of the chamber
D1 = 50 µm

D2 = 120 µm
D3 = 10 µm

Thickness = 50 µm

Figure 3

Senior Design May1634

Matlab Program:

The input for the Matlab Program will be the output from the data
collection, which are the tiff files of a selection of the chambers on
the chip. As the images of the stack are read by the program, the
individual droplets are detected, and the functions are called for
detecting the cells inside the droplets. Each droplet detected is
cropped to, a handful of the initial frames are processed only for the
presence of cells at all, if the majority of these frames aren’t empty
the droplet is processed for every frame in the image stack. Empty
droplets are skipped.

GUI displays the circles in the source, the current chamber in
process, the binary image result of the detection function, and the
position plot. Images and progress values are refreshed every frame.
If a frame doesn’t provide a reasonable change in position, or fails to
detect an object at all, the frame is dropped. Number of dropped
frames is tracked.

Program outputs the trajectory information to the Matlab workspace
and files.

Testing:
The goal of our project is to analyze the behavior of the cells in the
chambers and plot it into a graph so the result will be easier for people to
study. To test our program, the behavior of the cells in the droplet will be the
input data for our program. The program will turn the input data into a
binary image and detect the edge of the cells. In addition, it will remove the
edge of the chamber and smooth the binary image. The reason of
smoothing the binary image is to decrease the noise and other effects of the

×ýŁ5

Senior Design May1634

images. Furthermore, the program will detect the center of the cells and plot
it into the graph as the result.

By comparing the original image to the binary image and the location of the
center on the plot, we can visually identify if the program works reasonably
well and what the errors are. Input data is one of the dominant causes of
error for the program. The edge detection relies on noticeable contrast
between the background of the image and the perimeter of the cells. Higher
quality images for input data will result in less error in the Matlab program.

Issues & Challenges:
Sorting the data:

The Matlab function used to detect circles sorts the output data based
on a metric that rates the quality of the circles. This sorting isn’t useful
for our purposes, so we had to include a function for re-sorting the
data into an order based on position in the image. We opted to sort
first by y-coordinates of the circles and then by x-coordinates within

×ýŁ6

Senior Design May1634

ranges of the y-position. This sorts the circles from the top of the
image down and from left to right, with a set tolerance range on the y-
position to establish rows.

�

Potentially different types of input data:
Many of the image processing functions our Matlab program relies on
to detect the cells only work on grayscale images, but some of the
input data our client provided have an RGB colormap. Our program
restricts the input data to uncompressed tiff files, but automatically
converts RGB tiff images into grayscale tiff by checking for bit depth.

!

Overlapping:
Possibly the biggest issue for our program was the cells being close
enough to be detected as overlapping, which causes the edge

×ýŁ7

Senior Design May1634

detection process to detect them as one object. In an attempt to
overcome this, we process the binary image through the same
function for finding circles that we utilize to find the droplets. It still has
a significant amount of error, but because individual cells tend to be
reasonably circular, finding multiple circles inside a large object is more
accurate than using the centroid of the large object.

Conclusion:

By monitoring the movement of cells in microtissues in the microfluidic
device, we get some basic understanding of the cells’ responses to the
extracellular matrix and how cells communicate. Our Matlab program is
meant to be used to automatically provide trajectory information to
researchers who want to study the movement of cells using the LabChip
device. The program provides the useful variables into the Matlab
workspace for immediate continued work, as well as providing the data as
external files so the user can have the data available later without having to
run the tracking program again.

×ýŁ8

Senior Design May1634

Additional Documents:

Appendix I: Operation Manual

�

×ýŁ9

1. Load File Button
2. Number of Droplets
3. Frames
4. Output Style
5. Pause Time
6. Progress percentage
7. Start button
8. Droplets picture
9. Individual droplet
10. Result plot
11. Find the cell area
12. File name

Senior Design May1634

The user collects input data by taking photos of the LabChip device viewed
through an optical microscopes. The photos are typically taken every 1 or 2
minutes over several hours. These photos are stored in stacks of images
saved as uncompressed tiff stacks.

Running the Matlab script produces the initial GUI. The user selects the file
of the input data by clicking the “Load” button. The filename is displayed in
red next to this button.

The output style dropdown menu allows the user to select the type of plot.
The default plot shows the position relative to the size of the droplet. The
origin-centered plot shows the trajectories of all the objects detected in the
droplet with the initial position of every trajectory at the center of the plot.

Once the file is loaded and the output style is selected, the user enters the
pause time. The pause time is the minimum delay between the frames
during the processing. This feature is included because the program may be
used on different systems, some of which can process the images fast
enough that the progress of the program can’t be visually followed in the
figures the GUI displays. Forcing the delay allows the user to visually
observe the tracking process no matter what system the program is run on.

Once the pause time is set, the tracking process begins by clicking the “Start”
button. The program finds the droplets by looking for well-defined circles.
The droplet locations are sorted based on position in the image. The lower
left image displays the source image in grayscale with the detected circles
displayed in red.

The image is cropped to the current droplet being checked, and resized up
to provide more pixels to work with in the cell detection. The current
droplet is displayed in the lower right image in the GUI. The cell detection is
performed on this images and the final result of this is displayed in the upper
right image.

This is done for a small number of frames, and if the majority of these frames
are empty, the droplet is skipped. If the droplet isn’t skipped, then all the

×ýŁ10

Senior Design May1634

frames in the stack are processed and the detected cell trajectories are
plotted in the plot on the upper left in the GUI.

During the testing phase of the process, the progress of the testing is
displayed with the current frame checked out of the number of frames being
checked.
When the droplet isn’t empty, the location of the testing progress instead
displays the progress of the frames by showing the current frame out of the
total number of frames. Next to this progress, the number of the current
droplet being checked is displayed out of the total number of droplets in the
input data.

Next to the start button, the total progress is displayed as a percentage. The
progress markers, the images, and the plot are all updated every time the
frame is done being processed.

Once the droplet has been completely processed, the relevant data is sent to
the Matlab workspace and saved as external files. Then the program moves
to the next droplet. As stated, empty droplets are skipped.

×ýŁ11

Senior Design May1634

Appendix II: Previous Versions of the Design

Edge detection proved to be the best cell detection method we could come
up with. The first attempts at the code were made under the assumption
that the input data would be from dyed cells under a fluorescence
microscope. This would have allowed the code to look for specific color.
The fluorescence microscope would be too expensive to use enough to get a
lot of useful input data from, and dyeing the cells wouldn’t improve the
contrast a significant amount without the use of the fluorescence microscope.

After realizing the fluorescence microscope wasn’t a viable option, we didn’t
want to abandon the method of looking for color immediately. We looked
into the possibility of manually coloring the cells in the input data before
running a script to track the cell position. Manually modifying over a
hundred frames of an image would be very time consuming and would
have defeated the purpose of automatically processing the images in order to
obtain trajectory data. We decided that any image processing done would
have had to be part of the Matlab program.

The original edge detection function used the centroid of the objects in the
resulting binary image as the position data. This method didn’t handle
overlap well at all, but any method we looked into for dealing with overlap in
a very accurate way would have required a lot of image processing that
would have slowed down the program too much. For this reason, we opted
for a process that drops unreasonable changes in position and frames that
don’t provide data, and the number of dropped frames are tracked to assist
in quantifying error.

×ýŁ12

Senior Design May1634

Appendix III: Other Considerations & Final Thoughts

We wasted a lot of time dealing with the original plan for 3D tracking. We
kept trying to think of possible ways we could get 3D trajectory data, but we
were unable to get any kind of 3D input data and the 2D input data didn’t
allow for any useful method for tracking 3D position.

Admittedly, since cells move in three dimensions, being able to track that
movement in all those dimensions would be highly valuable. We spent a
large amount of time trying to figure out options for tracking 3-dimensional
migration trajectories. We couldn’t assume the area of the cell in the 2D
image was fixed, so tracking change in that area isn’t an option for tracking z-
position. We thought we might be able to assume fixed focal length and use
that assumption to track z-position, but due to environmental factors like
temperature, the focal length on the input data was never reliably constant.
When these strategies were abandoned, we still tried to keep working on 3D
trajectories. We wasted a lot of time focusing on finding ways of getting 3D
input data, but none of those ideas were able to work out in time for us to
write code for it.

In the end, we wasted a lot of time trying to meet our client’s original desire
for 3-dimensional migration trajectory analysis, and it caused our final
program to be less than what we had hoped. If we had focused on 2-
dimensions exclusively from the start of the project, our final program could
have been much better. We simply wasted time trying to find a way to make
a more useful project a reality.

After finally giving up on the 3-dimensional Matlab tracking, we were able to
develop a decent program and GUI for tracking cell migration trajectory in 2-
dimensions. The program is decently functional, but in need of major
improvements before it can be realistically utilized as a research tool.

×ýŁ13

Senior Design May1634

Appendix IV: Matlab Code
%{
Iowa State University - Senior Design Team May1634
Most recent update: April 27th, 2016

Project Adviser/Client: Dr. Long Que

Project Team:
 Jonathan Yatckoske
 Yaxiong Zhang
 Yuqian Hu
 Chun-Hao Lo
 Kaiyu Xu

Notes:
 Some functions of this script are incomplete. Origin-centered
 plotting, for instance.

 Other functions may not work as well as desired for all input data.
%}

function varargout = CellTrackerGUI(varargin)
% CELLTRACKERGUI MATLAB code for CellTrackerGUI.fig
% CELLTRACKERGUI, by itself, creates a new CELLTRACKERGUI or raises the
existing
% singleton*.
%
% H = CELLTRACKERGUI returns the handle to a new CELLTRACKERGUI or the
handle to
% the existing singleton*.
%
% CELLTRACKERGUI('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in CELLTRACKERGUI.M with the given input arguments.
%
% CELLTRACKERGUI('Property','Value',...) creates a new CELLTRACKERGUI or raises
the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before CellTrackerGUI_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to CellTrackerGUI_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%

×ýŁ14

Senior Design May1634

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help CellTrackerGUI

% Last Modified by GUIDE v2.5 17-Apr-2016 17:58:16

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @CellTrackerGUI_OpeningFcn, ...
 'gui_OutputFcn', @CellTrackerGUI_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before CellTrackerGUI is made visible.
function CellTrackerGUI_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to CellTrackerGUI (see VARARGIN)

% Choose default command line output for CellTrackerGUI
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes CellTrackerGUI wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = CellTrackerGUI_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure

×ýŁ15

Senior Design May1634

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in loadButton.
function loadButton_Callback(hObject, eventdata, handles)
% hObject handle to loadButton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global info;
global filename;
global num_images;
global test;
global data;
global radius;

%loads file and stores relevant filename and info to the workspace
filename = uigetfile('*.tif');
assignin('base','filename',filename);
info = imfinfo(filename);
assignin('base','info',info);
num_images = numel(info);
assignin('base','num_images',num_images);

%displays loaded filename in the GUI
set(handles.StaticText,'string',filename);

test = 0;
data={};

radius = 57;

function StartPage_Callback(hObject, eventdata, handles)
% hObject handle to StartPage (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of StartPage as text
% str2double(get(hObject,'String')) returns contents of StartPage as a double

×ýŁ16

Senior Design May1634

% --- Executes during object creation, after setting all properties.
function StartPage_CreateFcn(hObject, eventdata, handles)
% hObject handle to StartPage (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function EndPage_Callback(hObject, eventdata, handles)
% hObject handle to EndPage (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of EndPage as text
% str2double(get(hObject,'String')) returns contents of EndPage as a double

% --- Executes during object creation, after setting all properties.
function EndPage_CreateFcn(hObject, eventdata, ~)
% hObject handle to EndPage (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on selection change in listbox2.
function listbox2_Callback(hObject, eventdata, handles)
% hObject handle to listbox2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get(hObject,'String')) returns listbox2 contents as cell array
% contents{get(hObject,'Value')} returns selected item from listbox2

% --- Executes during object creation, after setting all properties.

×ýŁ17

Senior Design May1634

function listbox2_CreateFcn(hObject, eventdata, handles)
% hObject handle to listbox2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: listbox controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on key press with focus on listbox2 and none of its controls.
function listbox2_KeyPressFcn(hObject, eventdata, handles)
% hObject handle to listbox2 (see GCBO)
% eventdata structure with the following fields (see MATLAB.UI.CONTROL.UICONTROL)
% Key: name of the key that was pressed, in lower case
% Character: character interpretation of the key(s) that was pressed
% Modifier: name(s) of the modifier key(s) (i.e., control, shift) pressed
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in DoitButton.
function DoitButton_Callback(hObject, eventdata, handles)
% hObject handle to DoitButton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on selection change in popupmenu1.
function popupmenu1_Callback(hObject, eventdata, handles)
% hObject handle to popupmenu1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global type;
contents=get(handles.popupmenu1,'value');
switch contents
 case 1
 type=0;
 case 2
 type=1;
end

% Hints: contents = cellstr(get(hObject,'String')) returns popupmenu1 contents as cell array
% contents{get(hObject,'Value')} returns selected item from popupmenu1

×ýŁ18

Senior Design May1634

% --- Executes during object creation, after setting all properties.
function popupmenu1_CreateFcn(hObject, eventdata, handles)
% hObject handle to popupmenu1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on button press in pushbutton3.
function pushbutton3_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global info;
global type;
global filename;
global num_images;

global data;
global radius;
global pausetime;
bit_depth = info.BitDepth;

colorsForTrajPlot = {'r','g','b','y','m','c'};

X = imread(filename, 1);
[centers, radii] = findDroplets(X,50,100);
[numDroplets, trash] = size(centers);

label = sprintf('Droplets(1/%d)', numDroplets);
set(handles.chamberprog, 'String', label);

percentageChange = 1/(numDroplets*num_images);
percentage = 0;

for i = 1:numDroplets
 cla(handles.axes1);
 empty = 0;
 TotCells = 0;

 x_traj = cell(150,1); xtrajreal = cell(150,1);

×ýŁ19

Senior Design May1634

 y_traj = cell(150,1); ytrajreal = cell(150,1);
 lastx = cell(10,1);
 lasty = cell(10,1);
 droppedframes = cell(10,1);

 %Check if the droplet has any cells
 for k = 1:5
 X = imread(filename, k);

 if bit_depth==24
 X = rgb2gray(X);
 end

 [centers, radii] = findDroplets(X,50,100);
 [X2{k}, BW_final, stats, centers_loc, rads] = findCells(X, centers, radii, radius, k, i);
 if isempty(centers_loc)
 empty = empty + 1;
 end
 imshow(X,'Parent',handles.axes2), viscircles(handles.axes2, centers, radii);
 testlabel = sprintf('Testing(%d/5)', k);
 set(handles.frameprog, 'String', testlabel);
 label = sprintf('Droplet (%d/%d)', i, numDroplets);
 set(handles.chamberprog, 'String', label);
 imshow(BW_final,'Parent',handles.axes3), viscircles(handles.axes3, centers_loc, rads);
 imshow(X2{k},'Parent',handles.axes4);
 label = sprintf('Progress: %.2f%%', percentage*100);
 set(handles.percentage, 'String', label);
 pause(pausetime);
 end

 %if the majority of the first 5 frames aren't empty, process all frames
 %for trajectory plots and data
 if (empty < 3)
 for k = 1:num_images
 X = imread(filename, k);

 if bit_depth == 24
 X = rgb2gray(X);
 end

 [centers, radii] = findDroplets(X,50,100);
 [numCenters trash] = size(centers);

 if (numCenters==numDroplets)
 [X2{k}, BW_final, stats, centers_loc, rads] = findCells(X, centers, radii, radius, k,
i);

×ýŁ20

Senior Design May1634

 data{k} = centers_loc;
 else
 data{k} = [];
 if (k>1)
 X2{k} = X2{k-1};
 else
 X2{k} = [];
 end
 end

 [numCells, trash] = size(data{k});
 if (numCells>TotCells)
 TotCells = numCells;
 end

 if not(isempty(data{k}))
 for j=1:numCells
 testlast = max(find(~cellfun('isempty',lastx)));
 assignin('base','testlast',testlast);

 if (k>1 && j<=testlast)
 if (abs(data{k}(j,1)-lastx{j}) < 8) && (abs(data{k}(j,2)-lasty{j}) < 8)
 x_traj{j} = [x_traj{j} data{k}(j,1)];
 y_traj{j} = [y_traj{j} data{k}(j,2)];
 elseif (j==testlast)
 if (isempty(x_traj{j}))
 x_traj{j} = [x_traj{j} data{k}(j,1)];
 y_traj{j} = [y_traj{j} data{k}(j,2)];
 end
 else
 droppedframes{j} = droppedframes{j} + 1;
 end
 else
 droppedframes{j} = droppedframes{j} + 1;
 end

 lastx{j} = data{k}(j,1); lasty{j} = data{k}(j,2);
 assignin('base','lastx',lastx); assignin('base','lasty',lasty);
 end
 else
 for jj=1:10
 droppedframes{j} = droppedframes{j} + 1;
 end
 end

 if numel(x_traj)>=1
 if type==0

×ýŁ21

Senior Design May1634

 %default plot
 %plots the position of the cell trajectories within the
 %boundaries of the droplet
 %droplet is 120 micro-meters in diameter, the
 %trajectories are stored in pixel positions, so the
 %plot is
 %scaled to the actual units
 for j=1:TotCells
 plot(handles.axes1,x_traj{j}.*(120/334),120.-(y_traj{j}.*(120/334)),'o-', 'Color',
colorsForTrajPlot{j});
 %set plot axes and labels
 axis(handles.axes1, [0 120 0 120]);
 title(handles.axes1, 'Position')
 xlabel(handles.axes1,'\mum')
 ylabel(handles.axes1,'\mum')
 hold(handles.axes1, 'on')
 end
 end

 if type==1
 %origin-centered plots
 %incomplete: adjusts every value of the trajectory
 %vectors by subtracting the first value from all
 %values, making every cell trajectory start at 0
 %Does not plot these new trajectories on a suitable
 %axis yet

 %used to show the trajectories of the cell vs the other
 %cell trajectories in the droplet
 for j=1:TotCells
 if not(isempty(x_traj{j}))
 origin_xtraj{j} = x_traj{j}; origin_ytraj{j} = y_traj{j};

 origin_xtraj{j} = origin_xtraj{j}-x_traj{j}(1); origin_ytraj{j} = origin_ytraj{j}-
y_traj{1}(1);
 assignin('base','test',origin_xtraj);
assignin('base','test2',origin_ytraj);

 plot(handles.axes1,-334.+origin_xtraj{j}.*(334/120),120.-
(origin_ytraj{j}.*(334/120)),'o-','color',colorsForTrajPlot{j});
 end
 end
 end
 end

×ýŁ22

Senior Design May1634

 %update all figures and images in the GUI
 imshow(X,'Parent',handles.axes2), viscircles(handles.axes2, centers, radii);
 label = sprintf('Frames(%d/%d)', k, num_images);
 set(handles.frameprog, 'String', label);
 percentage = percentage+percentageChange;
 label = sprintf('Progress: %.2f%%', percentage*100);
 set(handles.percentage,'String',label);
 imshow(BW_final,'Parent',handles.axes3), viscircles(handles.axes3, centers_loc,
rads);
 imshow(X2{k},'Parent',handles.axes4);
 label = sprintf('Droplets(%d/%d)', i, numDroplets);
 set(handles.chamberprog,'String',label);
 pause(pausetime);

 %send relevant data to Matlab workspace
 assignin('base',sprintf('data%d', i),data);
 assignin('base',sprintf('xtraj%d', i),x_traj);
 assignin('base',sprintf('ytraj%d', i),y_traj);
 assignin('base',sprintf('framedrops%d', i), droppedframes);
 %assignin('base','X2', X2);
 end
 else
 percentage = percentage + percentageChange*num_images;
 end

 %export relevant data to csv files
 %each file will begin with the loaded filename, followed by the
 %variable exported with a number for the droplet (i), followed by the
 %number of the cell (j)

 %this syntax can potentially export empty files, and it might be
 %preferable to export the variables into as few csv files as possible
 %instead
 for j=1:TotCells
 dlmwrite(sprintf('%s - xtraj%d - %d.csv', filename, i, j), x_traj{j});
 dlmwrite(sprintf('%s - ytraj%d - %d.csv', filename, i, j), y_traj{j});
 dlmwrite(sprintf('%s - framedrops%d - %d.csv', filename, i, j), droppedframes{j});
 end
end

set(handles.percentage, 'String',sprintf('Progress: %.2f%%', 100));

function PauseTime_Callback(hObject, eventdata, handles)
% hObject handle to PauseTime (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

×ýŁ23

Senior Design May1634

% handles structure with handles and user data (see GUIDATA)
global pausetime;
n=get(hObject,'string');
pausetime=str2double(n);

% Hints: get(hObject,'String') returns contents of PauseTime as text
% str2double(get(hObject,'String')) returns contents of PauseTime as a double

% --- Executes during object creation, after setting all properties.
function PauseTime_CreateFcn(hObject, eventdata, handles)
% hObject handle to PauseTime (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function [X2, BW_final, stats, centers_loc, rads] = findCells(X, centers, radii, radius, k, i)
%findCells using edge detection and image processing to locate the cells within the frame of
the droplets
% final version of the function must iterate through the droplets
% identified by centers array

 %crops and enlarges droplets from the source image
 rect = [centers(i,1)-radius centers(i,2)-radius 2*radius 2*radius];
 X2 = imresize(imcrop(X, rect),2.9,'bilinear');

 %basic edge detection with chosen parameter values
 [~, threshold] = edge(X2, 'canny');
 fudgeFactor = 0.8;
 BWs = edge(X2,'canny',threshold*fudgeFactor);

 %image dilation to make the detected edges more noticeable
 se90 = strel('line',3,90);
 se0 = strel('line',3,0);

 BWsdil = imdilate(BWs, [se90,se0]);

 %fill holes in the image to form whole objects
 BWdfill = imfill(BWsdil, 8, 'holes');

 %remove objects in contact with the edge of the image, assumed to

×ýŁ24

Senior Design May1634

 %be the droplet edge
 BWnobord = imclearborder(BWdfill, 4);

 %smooth the image to assist with further image processing
 seD = strel('diamond',1);
 BWsmooth = imerode(BWnobord,seD);
 BWsmooth = imerode(BWsmooth,seD);

 %clear up initial noise/ any object with an area smaller than 300
 %pixels is removed from the image
 BW_final = bwareaopen(BWsmooth, 300);

 %basic watershed segmentation
 D = -bwdist(~BW_final);
 Ld = watershed(D);

 bwf = BW_final;
 bwf(Ld == 0) = 0;

 mask = imextendedmin(D,2);

 D2 = imimposemin(D,mask);
 Ld2 = watershed(D2);
 bwf3 = BW_final;
 bwf3(Ld2 == 0) = 0;

 %clear up noise again after watershed segmentation
 BW_final = bwareaopen(bwf3, 300);

 %find circles from the objects found in the image at this point
 [c_local, rads] = imfindcircles(BW_final, [20 40], 'Method', 'TwoStage');
 overlapflag = 0;

 %remove overlapping circles
 for ii = 1:(size(c_local,1)-1)
 if(abs(c_local(ii,1)-c_local(ii+1,1) < rads(ii)+rads(ii+1)))
 c_new = c_local([1:ii,ii+2:end],:);
 r_new = rads([1:ii,ii+2:end]);
 overlapflag = 1;
 end
 end

 if (overlapflag == 1)
 c_local = c_new; rads = r_new;
 end

 %circles are assumed to be the cells
 %this should provide basic approximate location of the cells in the

×ýŁ25

Senior Design May1634

 %image
 centers_loc = c_local;

 %this returns the centroids of the detected objects
 stats = regionprops(BW_final, 'Centroid');

 function [centers, radii] = findDroplets(image, min_radius, max_radius)
%findDroplets finds chambers with complete droplets on the LabChip device
% Uses the imfindcircles function to find the droplets within a radius
% range. Because imfindcircles sorts output by a metric that is useless
% for our purposes, this function then resorts the circles found by
% position in the image.
[centers_local, radii] = imfindcircles(image, [min_radius max_radius], 'Method', 'TwoStage');

if not(isempty(centers_local))
 %sort by y
 [y_co,y_index] = sort(centers_local(:,2));

 temp_i = sort(y_index);

 temp = centers_local;

 temp(temp_i) = centers_local(y_index); %sorts x-coordinate by ascending order of y-
coordinates
 temp(temp_i,2) = centers_local(y_index,2);

 %then sort by x
 if (length(temp)>2)
 for j = 1:length(temp)-1
 for i=1:length(temp)-j
 if (temp(i+1,2)-temp(i,2) < 100)
 if (temp(i+1,1) < temp(i,1))
 holdx = temp(i,1); holdy = temp(i,2);
 temp(i,1) = temp(i+1,1); temp(i,2) = temp(i+1,2);
 temp(i+1,1) = holdx; temp(i+1,2) = holdy;
 end
 end
 end
 end
 end

 centers = temp;
else
 centers = [];
end

×ýŁ26

